

Experience in decommissioning of German NPPs

Content

- NPPs in Germany Status and Forecast
- Decommissioning related challenges and experiences
 - Preparatory works
 - Segmentation technologies
 - Decontamination technologies
 - Monitoring systems
 - Site-remediation

Page 3

NPPs in Germany – Status and Forecast

- Status of Nuclear Power Plants in Germany:
 - 8 units in operation (approx. 12.702 MWe)
 - 9 units in "continuous none power operation" after Fukushima event
 - 15 units in safe enclosure / decommissioning / decommissioned
- By end of 2022, ALL German NPPs will be shut down!
- Worldwide many nuclear facilities have reached or are close to end of their design lifetime
- Decommissioning will become a major task in the next decades

Page 4

Experience in decommissioning in Germany

- Decommissioning activities in Germany have been started some decades ago
 - Research and Development has been performed
 - Many developments have been achieved, many lessons learned:
 - Technical: cutting/decontamination/treatment processes, handling, storage, etc.
 - Administrative: Legislation, Standards, Rules and Guidelines
 - First NPPs have been completely decommissioned
 - Future use concepts (e.g. industrial use of former NPP-site) have been implemented

Actually, a lot of knowledge and experience was gained

- Studies and preparatory works

Studies and preparatory works to start decommissioning:

- Concept development
 - Post operation (e.g. Downsizing)
 - Dismantling
 - Waste treatment
 - Storage
- Overall decommissioning strategy
- Radiological Plant characterization
- Decommissioning costs calculation

Many activities are needed until decommissioning can be started

- Studies and preparatory works
- Studies for decommissioning and waste deposition of single components and systems, as well as planing of the total decommissioning concept
- Dismantling of NPP systems: e.g. reactor pressure vessels and internals, steam generators, building structures, etc.
- Concept, qualification und procurement of monitoring systems for free release and waste characterisation
- Concept, design and building of storage facilities
- Engineering services

Page 7

Decommissioning related challenges and experiences

- Segmentation Technologies
- In former decommissioning projects a lot of different technologies have been developed and qualified for segmentation tasks
- No standardized concepts have been used, because of:
 - the wide variety of reactor designs and characteristics
 - the wide variety of segmentation tasks
 - different priorities of designers, customers and authorities
- No "allround" technology is available


A toolbox is needed to choose the "best" technical solutions

- Segmentation technologies

bandsaw

diamond wire cutting

flame cutting

AWSJ

plasma arc cutting

CAMC

EDM

NUKEM Technologies

mechanical

milling cutter

hacksaw

nibbler

hydraulic shear

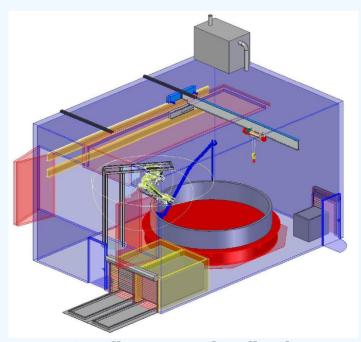
NUKEM Technologies

Decommissioning related challenges and experiences

- Segmentation Technologies

Central mast manipulator in the reactor room used at MPRR in Karlsruhe

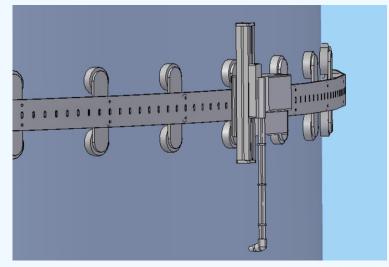
Operation by handling rods used at VAK in Kahl



Page 10

NUKEM's strategy for present decommissioning project KKP Philippsburg: Decommissioning of reactor vessel

- Segmentation strategy:
 - In-situ pre segmentation
 - Final segmentation in separate confinement
- Low requirements to handling equipment Optimized segmentation time due to parallel
- Main segmentation process:
 - Autogenous flame cutting
- High cutting speed Low maintenance and investment costs
- Secondary segmentation process
 - Diamond wire cutting


Confinement for final segmentation

Page 11

NUKEM's strategy for present decommissioning project KKP Philippsburg: Decommissioning of reactor vessel

- Handling systems:
 - Industrial standard systems adapted to specific requirements
 - KUKA-robot with adapted software
 - Circular tractor system for pre-segmentation
- High reliability Minimum maintenance efforts
- General:
 - Flexible design of equipment
- Potential re-use of equipment

Circular tractor system

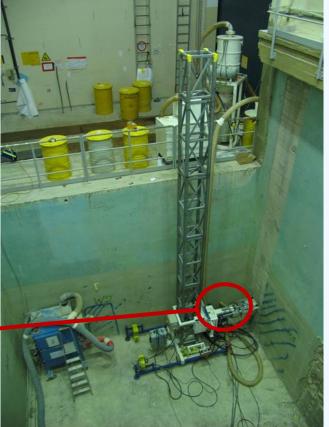
- Decontamination Technologies
- Free release of materials is a major task in decommissioning projects
 - Reduce the amount of radioactive waste
 - Safe costs for storage and disposal
- Decontamination technologies are evident to achieve a free release
- Many different decontamination technologies are needed:
 - Concrete parts (Building structures, etc.)
 - Metal parts (Equipment, Steel constructions, etc.)
 - the wide variety of component's geometry
 - Different types of contamination (surface contamination, activity, etc.)

Experience shows that a free release rate of more than 95% of the total NPP mass can be achieved

- Decontamination technologies

Manual decontamination:

- Decontamination technologies


Remote operated decontamination at VAK Kahl

- Monitoring systems
- Automatic monitoring systems to allow high throughput of materials:
 - Free release
 - Waste container characterisation

- Site remediation

- Free release of site area:
 - Removal of remaining materials (concrete structures, soil, pipes,...)
 - Measurement/ Sorting of materials
- Results from Fuel Fabrication Facility in Hanau:
 - Daily throughput: 200 bis 300 Mg/day
 - Total mass: 90,000 Mg (resulting in 400 Mg of radioactive waste)

October 2013

Page 17

NUKEM Technologies At A Glance

Core Competencies

- Waste Management
- Spent Fuel Management
- Decommissioning
- **Engineering & Consulting**
- HTR Fuel Technology

Key Markets

- Eastern Europe
- Western Europe
- South Africa
- Asia

Customers

- Nuclear power plants
- Nuclear research centers
- Nuclear fuel cycle industry
- Governments / Ministries / Organizations

Close to our Customers

- Headquarters in Alzenau, Germany
- Offices in
 - Russia / Ukraine
 - China
 - Lithuania / Bulgaria
 - France / Spain / Italy
 - **Great Britain**

Page 18

Your Partner for Nuclear Engineering Solutions

