ФГУП «НИИ НПО «ЛУЧ» ПИЯФ КИ

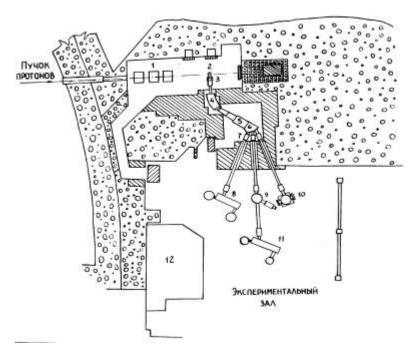
Снижение уровня жидких радиоактивных отходов путем использования высокотемпературных мишеней для протонной генерации медицинских изотопов

В.Н. Пантелеев, И.Б. Савватимова, А.А. Ясколко

Москва

Технология получения медицинских изотопов

Облучение мишени


- Реактор
- Ускоритель

Выделение изотопа из облученной мишени

- Радиохимия
- Масс-сепарация

Стерилизация и изготовление фарм-препарата

ПРОТОННАЯ ГЕНЕРАЦИЯ ИЗОТОПОВ Установка ИРИС (ПИЯФ РАН)

Мишенная зона установки ИРИС с конечной частью протонного тракта и мишенно-ионным устройством, установленном на высоковольтной платформе масс-сепаратора

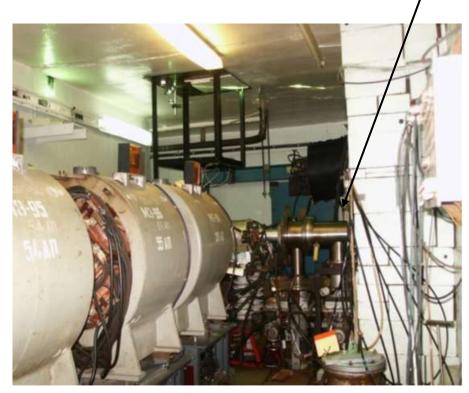
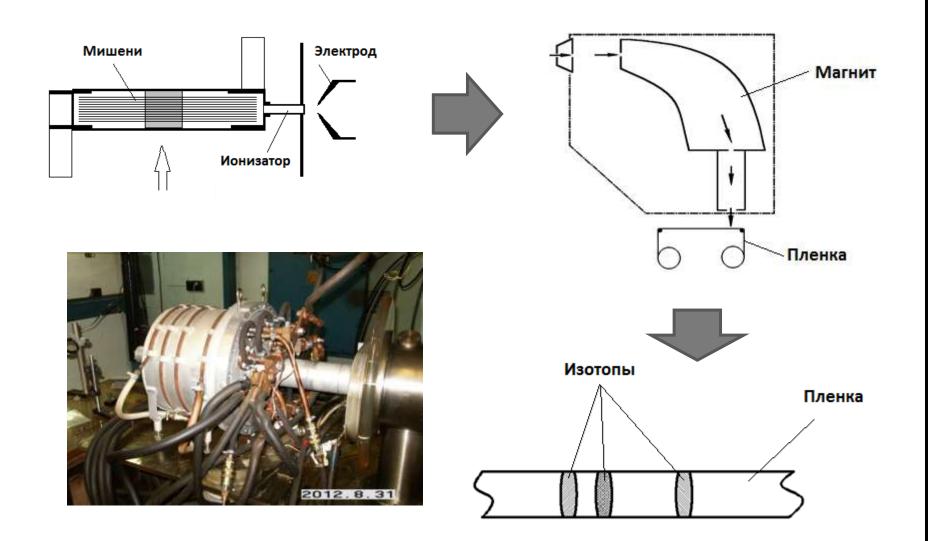
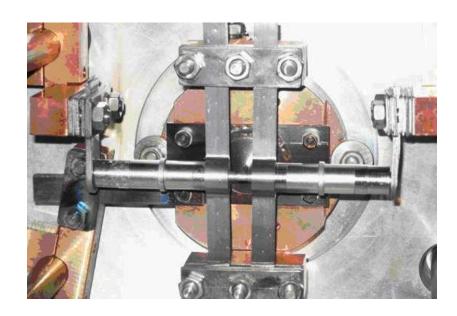
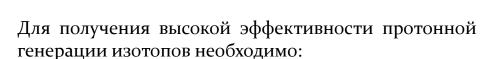



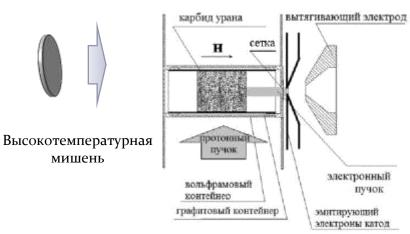
Схема установки ИРИС


МАСС-СЕПАРАЦИЯ

Мишенно-ионное устройство

Мишенный контейнер из многослойной вольфрамовой фольги. Рабочая температура выше 2400 °C.




Мишенно-ионное устройство со снятой частью вакуумной камеры и без тепловых экранов

Получение медицинских изотопов

Использование высокотемпературных мишеней на протонных ускорителях, оснащенных масс-сепаратором, позволяет получать широкий спектр радиоактивных изотопов высокой чистоты для медицинской диагностики и терапии Преимуществом данного метода является отсутствие жидких радиоактивных отходов.

- использовать <u>высокоплотный</u> мишенный материал, что позволит эффективно использовать пучки бомбардирующих частиц
- для интенсификации диффузионных процессов и, как следствие, ускорения выделения образовавшихся в мишени продуктов, достигать высоких (выше 2400 °C) температур мишеней в мишенном устройстве
- использовать оптимизированные конструкции мишенных сборок

Мишенное устройство

Изотопы:

Mn, Fe, Co, Ni, Ga, Rh, Pd, Rb, Cd, In, Sn, Sb, Te, I, Cs, Tl, Pb, Bi, Po, At

 $^{86,\,88,\,89}{\rm Rb}_{^{131,\,132,\,136,\,138,\,139,\,140}Cs}_{^{208,\,211,\,212,\,223,\,224}{\rm Fr}}$

Выход изотопов Rb, Cs, Fr

	Α	T _{1/2}	Эффективность, %
	86m	1,02 мин	7
Rb	88	17,8 мин	13
	89	15,15 мин	21
	Α	T _{1/2}	Эффективность, %
	131	9,7 дн	88
Cs	132	6,48 дн	74
	136	12,16 дн	73
	138	33,4 мин	59
	138m	2,91 мин	24
	139	9,27 мин	64
	140	1,06 мин	35
Fr	Α	T _{1/2}	Эффективность, %
	208	0,98 мин	15
	211	3,1 мин	22
	212	20 мин	27
	223	21,8 мин	30
	224	3,33 мин	21

Высокотемпературные мишени

Материал мишеней	Получаемый Изотоп	Рабочая температура,	
		۰C	
UC		2300	
UZr(CN)	Ra-223, Ra-224	2500	
ThC	Na-223, Na-224	2300	
YC2	Sr-82	2000	Выделенный
			генераторный
			радиоизотоп Sr-82
			использовался в РНЦ
ZrC		2500	РХТ для испытания
			Sr/Rb генератора

Заключение

- 1. Технология получения медицинских изотопов на установках с масссепаратором является перспективной с точки зрения отсутствия жидких радиоактивных отходов.
- 2. Разработаны технологии получения высокотемпературных мишеней на основе UC, U,Zr(CN), YC₂.
- 3. Разработанные мишенные композиции позволяют получать короткоживущие (применительно к ядерной медицине) радионуклиды с периодами полураспада часы-минуты.
- 4. Проведены эксперименты по получению радиоизотопов Rb, Cs, Ra, Fr, Sr с использованием разработанных мишеней и показано, что эффективность получения изотопов достигает 80 %.

СПАСИБО ЗА ВНИМАНИЕ